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Abstract: In this paper, four stylized empirical features about the log returns of financial 
data sets from the point of view in statistical analysis will be described, which are fat-tails, 
the gain/loss asymmetry, the absence of autocorrelation and volatility clustering. Those 
properties will be illustrated with three assets from different financial markets. Because 
these features cannot be captured by any single model, it is necessary to discuss several 
models which consider kurtosis-autocorrelation combinations and volatilities. The purpose 
of this paper is to compare three theoretical models, GARCH, ARSV and EGARCH, 
figuring out how well they can reproduce those stylized features, and examine them through 
forecasting, which is helpful for modifying and establishing more proper empirical models 
in order to perform reliable analysis. Finally, it will be pointed out that none of the models 
dominates the others when comparing their ability to capture four features. However, ARSV 
can better reproduce the original data set and it can generate smaller value of 
autocorrelations with larger range of values of parameters.  

1. Introduction 

The goal of this paper is to summarize basic knowledge about three models, GRACH, EGARCH and 
ARSV, and compare them. The general statistical properties and widely known empirical qualitative 
truths about asset’s returns are called stylized features or stylized facts. Four features will be 
discussed in Section 2, which will be considered for modelling part. The focus of this paper is to 
compare the statistical modelling of financial data series to find out how well those models can 
reproduce the stylized features. Section 3 will summarize three theoretical models and compare them 
theoretically. In section 4, forecasting will be applied and comparations among these models in 
empirical perspective will be discussed. Section 5 contains conclusions. In this article, the daily 
closing prices of MSFT, EUR/USD exchange rate and Crude Oil Contract from January 1, 2000 to 
January 31, 2020 are used for analysis and discussion, which are transformed into a log-return series 
to make the data comparable and stable.  
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2. Stylized Features of Asset Returns   

2.1. Fat Tails 

The first stylized feature is fat tails, which means that the probability of observing extreme values is 
higher than corresponding normal distribution with same mean and variance. Kurtosis is often used 
to quantify the peakedness and measures the tails of the distribution. A distribution with kurtosis 
value higher than 3 is defined as leptokurtic. See Table 1, the distributions of all three assets are 
leptokurtic.  

We can visualize fat tails using histogram and density plot. The peaks of all histogram of daily log 
returns of three financial data are higher and the tails are fatter at both side, which suggests that all 
three data sets are prone to outlier and daily returns of the market assets tend to have excess kurtosis.  

2.2. Asymmetry 

The second stylized feature is gain/loss asymmetry. The skewness measures the symmetry of 
distribution with respect to the mean. All symmetric distribution has skewness value equal to zero. 
The descriptive statistics are summarized in Table 1. The negative skewness value implies that MSFT 
and crude oil data are spread out toward left and the right tail is fatter than the left one, while the 
distribution of EUR/USD spread out toward right and its distribution is concentrated on the left.   

Table 1: Descriptive statistics of daily log return for three financial assets. 

Asset mean variance skewness kurtosis 
MSFT 0.03025333 3.595063 -0.1311608 12.80778 

EUR/USD 0.001482144 0.3699958 0.05229373 4.76669 
Crude Oil 0.01372379 5.528808 -0.09026126 7.145502 

 

2.3. Lack of Autocorrelation 

The third stylized feature about the dependence of log-return distribution is the absence of 
autocorrelation, which measures the correlation of returns between a given day and lagged days from 
the same data series. From the ACF plot of MSFT, the autocorrelation function for MSFT decays to 
zero after a lag, which implies that the price movements do not have significant linear autocorrelation. 
This feature suggests that traditional method, such as autocovariance analysis, ARMA modelling and 
Fourier analysis, cannot distinguish white noise from the actual returns [2].  

2.4. Volatility Clustering 

The fourth stylized feature is the volatility clustering, which implies that prices have time-varying 
volatility. The signs of successive price movements are independent, but the magnitude of absolute 
or squared returns have significant positive autocorrelation and its decay slowly, which suggests that 
we can predict changes of returns based on previous performance by volatility modeling. Large price 
changes tend to cluster in time and the volatilities are constant. With this feature, the random walk 
modelling is not a good fit because it cannot accommodate for time-varying volatility, or Gaussian 
formulation with heavy-tailed increments.  
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3. Theoretical Models 

3.1. GARCH Model 

Bollerslev (1986) introduced standard GARCH (p, q) model, which represents the dynamic evolution 
of the volatility of financial returns. GARCH (1, 1) will be discussed in details for its widely 
application and simplicity, which is given by:  
 

𝑟! = 	𝜇 + 𝜀!            (1) 
𝜀! =	𝜂!𝜎!            (2) 

𝜎!" 	= 	 𝑎# +	𝑎$𝜀!%$" + 𝑏$𝜎!%$"            (3) 
 
where {𝜂!} is independently identically distributed random variables with mean equal to zero.  

For the first stylized fact that GARCH model catches, the excess kurtosis, we need to consider the 
fourth moment which exists if and only if 𝑎$"𝐸(𝜂!&) + 2𝑎$𝑏$𝐸(𝜂!") + 𝑏$"  is less than one[5]. The 
kurtosis of 𝜂! equals to 

 

 𝑘& =	
'()!"*	/	'()!#*

#
($%(.$'()!#*/0$*

#
)

$%(.$#'()!"*/".$0$'()!#*/0$#)
            (4) 

 
Assuming normality for the distribution of {𝜂!}, 𝑘& is larger than three, which is consist with the 

property of excess kurtosis.  
For the third and fourth features, the autocorrelation function of {𝜂!"} is discussed, which is defined 

as:  
 

𝜌2 = (𝑎$𝐸(𝜂!") + 𝑏$	)2%$
.$'()!#*($%0$#%.$0$'()!#*)

$%0$#%".$0$'()!#*
, 𝑛 ≥ 1           (5) 

 
The decay of autocorrelation is shown by the exponential part, (𝑎$𝐸(𝜂!") + 𝑏$	)2%$ . 𝑎$𝐸(𝜂!") +
𝑏$	measures the persistence of volatility clustering of squared returns and 𝑎$𝐸(𝜂!") measures of the 
dependence of squared returns with a given persistence. Autocorrelation increases with the 
persistence when 𝑎$ is given.  

Given a constant persistence, both the kurtosis and autocorrelation increase with 𝑎$. The function 
of the relationship between kurtosis and autocorrelation under the normality of {𝜂!} can be derived 
by combining each individual function:  
 

𝜌2 = (𝑎$ + 𝑏$	)2%$ 7
0$	($%34"&$)
3%34"&$

+ 𝑎$8 , 𝑛 ≥ 1          (6) 
 
From the plot, the autocorrelation increases with the kurtosis when persistence is given and the first-
order autocorrelation increases rapidly at first with kurtosis and persistence and then the increasement 
slows down.  

To match the first stylized feature, heavy-tailed distribution can be applied to the original GARCH 
model, such as the student’s t distribution and General Error Distribution (GED) [8][9]. However, it 
showed that the kurtosis coefficient and the student’s t GARCH model will cause biased and 
inconsistent estimators of the degree of freedom. Feng, Shi (2017) compared four different GARCH 
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models, showing that GARCH model with tempered stable distribution consistently outperforms 
those with normal, student’s t and GED distributions [11]. 

3.2. ARSV Model  

ARSV (1) model was introduced by Taylor (1986) [12]. The volatility is transformed into 
logarithms and depends on unobserved latent variable. The model is defined as:  
 

𝜀! = 𝑧!𝜎! , {𝑧!}~𝑛𝑖𝑑(0, 1)           (7) 
𝑙𝑛𝜎!" = 𝜔 + 𝛽𝑙𝑛𝜎!%$" + 𝜂! , {𝜂!}~𝑛𝑖𝑑(0, 𝜎)")           (8) 

 
where {𝜂!} are independent normal distributed random variables with mean zero and variance 𝜎)", 
error terms {𝑧!} and {𝜂!} are mutually independent.  

From standard theory, all moments of 𝑙𝑛𝜎!" exists if and only if |𝛽| < 1. The kurtosis of 𝜀! is given 
by:  
 

𝑘& = 𝑘&(𝑧!)exp	{𝜎5"}             (9) 
 
where 𝜎5" = 𝜎)"/	(1 − 𝛽"), which increases with 𝜎5" monotonically. When {𝑧!} follows the normal 
distribution, 𝑘& is larger than three, which means 𝜀! is leptokurtic.  

The second stylized feature can be captured by ARSV (1) when {𝑧!} are correlated to {𝜂!}.  
To analyze how ARSV (1) model match the fourth feature, the autocorrelation function of {|𝜀!|"6} 

is considered:  
 

𝜌2(𝑚) =
789(6#:'

#;(*%$
4) 789(6#:'

#*%$
, 𝑛 ≥ 1           (10) 

 
where 𝑘6 = 𝐸|𝑧!|&6/(𝐸|𝑧!|"6)" [13]. The 𝛽 represents a measurement of persistence in ARSV (1) 
model. Malmsten & Ter�̈�svirta (2004) pointed out that the decay rate of squared observations is faster 
than exponential and stabilizes to 𝛽 as the lag length increases [16]. Carnero, Pena & Ruiz (2004) 
showed that the approximated autocorrelations are larger than the true ones and the decay rate of 
approximated autocorrelations is smaller than that of true autocorrelations when the lags are small 
[17]. The relationship between kurtosis, persistence and autocorrelation of {|𝜀!|"}  is  
 

𝜌2(1) =
(4"/4"(<!))*

(
%$

4"%$
, 𝑛 ≥ 1           (11) 

 
Similar to GARCH (1, 1) model, the first stylized feature can also be captured by ASRV model as 

well. For example, the ARSV model with student’s t distribution can be used to describe heavy tails 
and volatility dependencies [18]. When the number of degrees of freedom in student’s t distribution 
decreases, the effect on first-order autocorrelation from persistence 𝛽  can be neglected, and the 
autocorrelation decreases rapidly with the number of degrees [16].  

391



3.3. EGARCH Model 

EGARCH model, proposed by Nelson (1991), has direct relationship with the GARCH (1, 1) and 
ARSV (1) model. Like ARSV (1) model, the volatility term is defined using logarithm and its lags 
ensures that 𝜎!" is positive. The specification of volatility of EGARCH (1, 1) model is:  
 

𝑟! = 𝜇 + 𝜀!              (12) 
𝜀! = 𝜎!𝑧!              (13) 

ln(𝜎!") = 𝜔 + 𝛼(|𝑧!%$| − 𝐸[|𝑧!%$|]) + 𝛾𝑧!%$ + 𝛽ln	(𝜎!%$" )             (14) 
 
where 𝜇  is expected return, 𝜀!  is a zero-mean white noise and 𝑧!  follows standard gaussian 
distribution [19].  

The kurtosis of 𝜀!, assuming 𝑧! follows the gaussian distribution, is given by: 
 

 𝑘& = 3exp	((=/>)
#

$%;#
)∏

?@";+&$(=/>)A/789	(%B;#+&#=>}?@";+&$(=%>)A

(?@;+&$(=/>)A/789	(%";#+&#=>)?@;+&$(=%>)A)#
D
EF$             (15) 

 
where Φ(∙) is the cumulative distribution function of the standard normal distribution. It is obvious 
that 𝑘& is larger than three, which matches excess kurtosis of financial data series.  

The parameter 𝛾 measures the asymmetry, the second feature, and the term 𝛼(|𝑧!%$| − 𝐸[|𝑧!%$|]) 
represents a magnitude effect. Including parameter 𝛾 can reproduce financial data series with a larger 
range of values of kurtosis and autocorrelations.  The error {𝑧!} has all moments if and only if |𝛽| <
1. When 𝛼 = 0, the moment expressions of two models, EGARCH (1, 1) and ARSV (1), are similar.  

For measuring the third and fourth features, the autocorrelation of squared errors is derived and is 
given by: 

 
𝜌2(1) =

'(G!&$# 789(;(&$H**I$I#%I,
4-I"%I,

            (16) 
 
where 𝑔 = 𝛼(|𝑧!%$| − 𝐸[|𝑧!%$|]) + 𝛾𝑧!%$ , 𝑝$ = ∏ 𝐸(exp	(2

EF$ 𝛽E%$𝑔)) , 𝑝" =
∏ 𝐸(exp	((1 +D
EF$ 𝛽2)𝛽E%$𝑔)), 𝑝3 = ∏ (𝐸(expV2𝛽E%$𝑔W))"D

EF$ ,	𝑝& = ∏ 𝐸(exp	(D
EF$ 2𝛽E%$𝑔)) [19]. 

The value of autocorrelation decreases when 𝛽  decreases. The decay rate of the autocorrelation 
depends on 𝛽 as well as on 𝛼 and 𝛾. Also, the decay rate is faster than exponential at short lags and 
approaches 𝛽 when the lag length increases [16].   

3.4. Comparation of Three Models  

First of all, the volatility terms in ARSV (1) and EGARCH (1, 1) model are transformed into 
logarithms, which is different from GARCH (1, 1) model. Second, EGARCH model overcomes some 
drawbacks of the GARCH model, which cannot match asymmetry of the returns. Also, there are 
restrictions for parameters of GARCH model to guarantee positivity of the conditional variance and 
it is difficult to measure the persistence of GARCH model [17].  

Moreover, unlike EGARCH (1, 1) and GARCH (1, 1), ARSV (1) can describe financial data series 
with high kurtosis and low first-order autocorrelation of squared observations. Given same kurtosis 
and persistence, the value of autocorrelation of squared errors in ARSV (1) is lower than that in 
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EGARCH (1, 1) and GARCH (1, 1). Therefore, ARSV (1) can be a better fit for financial data series 
sometimes. 

Furthermore, the relationships between kurtosis, persistence and first-order autocorrelation of 
GARCH (1, 1) and ARSV (1) with normal errors are compared, see Figure 1. In the plot, the first-
order autocorrelation of ARSV (1) is increasing with persistence β  while the first-order 
autocorrelation of GARCH (1, 1) is decreasing with persistence a$ + b$	 . The low first-order 
autocorrelation and high persistence can be satisfied at the same time for ARSV (1) model than 
GARCH (1, 1) model.  

 

Figure 1: Relationship between kurtosis, persistence and first-order autocorrelation of GARCH 
(1,1) (up) and ARSV (1) (down) with normal errors. 

4. Empirical Model Fitting and Forecasting 

We will perform forecasting by fitting three models discussed above on returns of MSFT, EUR/USD 
exchange rate and Crude Oil. The result of fitting and forecasting of MSFT will be showed in details. 
Data from the first 15 years will be treated as training data and the rest will be treated as test data.  

4.1. GARCH (1, 1) 

From the ACF plot of squared standardized residuals of GARCH (1, 1) for MSFT, the residuals do 
not have autocorrelation. The plot about fitted series with two conditional SD superimposed of 
GARCH (1, 1) shows that our model explains most historical information of original financial data 
series. 

Based on the analysis in section 2.1, the data has fat tails, which implies that we can fit data with 
GARCH (1, 1) model with student’s t distribution. Comparing two QQ plots of residuals of standard 
GARCH and GARCH-t model, we know that the residuals from GARCH-t model satisfy normal 
distribution, which means that GARCH-t model can explain more data properties and represent the 
excess kurtosis and fat tails of the distribution of sample financial data series at the same time.  

4.2. ARSV (1) 

The default plot of the estimated ARSV (1) model on MSFT plots a summary of posterior density of 
the estimated volatility through its 5%, 50% and 95% quantiles, the Markov chain of three parameters 
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and prior and posterior density plots of the three parameters, which gives us a general visualized 
information of the fitted model. For predicting the log return of MSFT in 2015 to 2020, we quantify 
the uncertainties of predictions through quantiles (5%, 50%, 95%). See Figure 2.  

 
Figure 2: prediction of ARSV (1) for MSFT with 50% (black) and 5% / 95% quantiles (gray). 

4.3. EGARCH (1, 1) 

From ACF plot of squared standardized residuals and plot about fitted series with two conditional SD 
superimposed of EGARCH (1, 1) for MSFT, we know that fitted EGARCH (1, 1) model has no 
autocorrelation and the model contains most of the information of MSFT.  

The bootstrap method is used for the forecasting. Figure 3 shows the bootstrap forecast error bands 
of EGARCH (1, 1) model of returns and sigma. The forecast log-returns and sigma are shown in red 
line and the minimum value, 25%, 50%, 75% quantiles are shown in other colors.  
 

 

Figure 3: EGARCG (1, 1) bootstrap forecast results. 

4.4. Comparison of Three Models 

To consider how well the three fitted models perform on test data, the mean absolute error (MAE), 
root mean squared error (RMSE), mean absolute percentage error (MAPE) and mean absolute scaled 
error (MASE) of residuals and forecasting errors are calculated and compared. From the results, 
ARSV (1) has smallest residuals, which means it can reproduce the original financial data series more 
properly than the other two models. The forecasting results from GARCH (1,1) have slightly smaller 
forecast errors than EGARCH (1, 1) and ARSV (1), but all three models have similar forecast errors.  

From the discussion of three models in Section 3, we focus on describing how those models match 
four stylized features and get three formulas related to those features, the kurtosis, persistence and 
the first-order autocorrelation, which are calculated for all fitted models. From the results, the 
persistence of fitted ARSV (1) is smaller than that of GARCH (1, 1) and EGARCH (1, 1). The 
kurtosis and persistence of fitted GARCH (1, 1) and EGARCH (1, 1) are similar. It can be noticed 
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that the estimated properties of fitted GARCH (1, 1) are closer to that of EGARCH (1, 1). With 
respect to the first stylized feature, the kurtosis of fitted ARSV (1) for MSFT and EUR/USD are 
closer to the sample kurtosis, 12.80778 and 4.76669. While the kurtosis of GARCH (1, 1) and 
EGARCH (1, 1) for crude oil are closer to the sample kurtosis of 7.145502. Thus, ARSV (1) can be 
more appropriate to match the kurtosis of sample financial data series than GARCH type model. 
Finally, regarding to the third and fourth features, the value of first-order autocorrelation in ARSV 
(1) are smaller than in the GARCH (1, 1) and EGARCH (1, 1) in all three financial data series.  

5. Conclusion 

In this article, we compare GARCH, EGARCH and ARSV models that can capture four stylized 
features from empirical and theoretical perspective. For the empirical conclusion, the ARSV model 
can reproduce the original financial data series more properly and the forecasting results from three 
models does not generate large difference. The kurtosis, persistence and first-order autocorrelation 
value of the fitted GARCH model are similar to EGARCH model, but rather different from ARSV 
model. For the theoretical conclusion, ARSV model can be a better choice when the squared 
observations have high kurtosis and low first-order autocorrelation, while GARCH model can also 
be applied under the leptokurtic conditional distribution. Moreover, ARSV model can generate 
smaller value of autocorrelations with larger range of values of parameters than GARCH and 
EGARCH models. Finally, ARSV and GARCH models can satisfy the low autocorrelation and high 
persistence at the same time, and the estimation of persistence of GARCH model is usually higher 
than in other two models.  
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Appendix 

Accuracy of three fitted models on MSFT data. 
GARCH (1,1)  RMSE MAE MAPE MASE 

 residuals 2.0215 1.3469 243.0709 0.6794 
 forecast errors 1.4581 0.9944 143.0806 0.6579 
      

EGARCH (1,1)  RMSE MAE MAPE MASE 
 residuals 2.0212 1.3464 180.6801 0.6791 
 forecast errors 1.4644 0.9991 40.5895 0.6610 
      

ARSV (1)  RMSE MAE MAPE MASE 
 residuals 0.0053 0.0039 0.0299 0.0020 

 forecast errors 1.4648 0.9998 123.7492 0.6615 
 

Parameters, kurtosis, persistence and first-order autocorrelation of three models. 
  GARCH (1, 1) ARSV (1) EGARCH (1, 1) 

MSFT     
  𝑎! = 0.0455 𝜇 = 0.806 𝜔 = 0.01831 
  𝑎" = 0.0623 𝜎#$ = 0.061 𝛼 = −0.04361 
  𝑏" = 0.9261 𝜙 = 0.972 𝛽 = 0.9889 
    𝛾 = 0.0961 
 𝑘% 4.5281 9.0554 4.5433 
 persistence 0.9884 0.972 0.9889 
 𝜌" 0.1960 0.0279 0.14802 
     

EUR/USD     
  𝑎! = 0.0011	 𝜇 = −1.0966 𝜔 = −0.0035 
  𝑎" = 0.0334	 𝜎#$ = 0.0042 𝛼 = −0.0122 
  𝑏" = 0.9641	 𝜙 = 0.9949 𝛽 = 0.9950 
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    𝛾 = 0.0716 
 𝑘% 5.3111 4.5332 4.9848 
 persistence 0.9974 0.9949 0.9950 
 𝜌" 0.2056 0.0021 0.0951 
     

Crude Oil     

  𝑎! = 0.0233 𝜇 = 1.404 𝜔 = 0.0135 
  𝑎" = 0.0537 𝜎#$ = 0.012 𝛼 = 0.0441 
  𝑏" = 0.9436 𝜙 = 0.990 𝛽 = 0.9929 
    𝛾 = 0.1053 
 𝑘% 6.5013 5.4829 6.4890 
 persistence 0.9972 0.990 0.9929 
 ρ" 0.3777 0.0059 0.1671952 

 

 

Daily closing price of three financial assets from January 1, 2000 to January 31, 2020. 

 

 

Daily log returns of three financial assets from January 1, 2000 to January 31, 2020. 
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Histogram of three financial assets against theoretical normal distribution (red line). 

 

 

QQ plot of three financial assets against theoretical normal distribution. 

 

 

Autocorrelation plot of MSFT with 95% confidence interval for first 24 lags. 
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Autocorrelation plot of log-returns(top), absolute log-returns(middle) and squared log-
returns(bottom) of MSFT for first 1000 lags. 

 

 

Relationship between kurtosis, persistence and first-order autocorrelation of GARCH (1, 1) with 
normal errors. 

 

 

ACF and Fitted series with two conditional SD superimposed of GARCH (1, 1) for MSFT. 
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QQ plot of standard GARCH (left) and of GARCH-t (right) for MSFT. 

 

 

Default plot of ARSV (1) model for MSFT. 

 

 

ACF and Fitted series with two conditional SD superimposed of EGARCH (1, 1) for MSFT. 
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